67 research outputs found

    Bacterial L-arabinose isomerases: industrial application for D-tagatose production

    No full text
    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area

    Bacterial sucrose isomerases: properties and structural studies

    No full text
    International audienceDue to their significant role in food industry, sucrose isomerases are good candidates for rational protein engineering. Hence, specific modi. cations in order to modify substrate affinity and selectivity, product specificity but also to adapt their catalytic properties to particular industrial process conditions, is interesting. Our work on the structural studies of the sucrose isomerase, MutB, which presents the first structural data available on a trehalulose synthase and the first experimental data on complexed forms of sucrose isomerases represents a significant advance in the understanding of these enzymes. In this review we give an overview of what is known on biochemical properties and structural aspects of different sucrose isomerases in particular those reported from bacteria

    Structure / function relationships of sucrose isomerases with different product specificity

    No full text
    Proceedings of the Symposium on Amylases and Related Enzymes, 2009International audienceSucrose isomerases from Protaminobacter rubrum, SmuA, and from Pseudomonas mesoacidophila MX-45, MutB, have been crystallized, and their three-dimensional structures solved. Determination of these crystal structures in their native states as well as in complex with substrate and substrate analogues have con- tributed to the visualization of a part of the double displacement reaction mechanism of this class of enzymes, and to the understanding of the specificity of the products. Comparative structural studies between the three- dimensional structures of trehalulose synthase, MutB, and the isomaltulose synthase, SmuA, have been conducted as well

    Molecular recognition by gold, silver and copper nanoparticles

    No full text
    International audienceThe intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health

    Large negatively charged organic host molecules as inhibitors of endonuclease enzymes

    No full text
    International audienceThree large negatively charged organic host molecules; β-cyclodextrin sulphate, para-sulphonato-calix[6]arene and para-sulphonato-calix[8]arene have been shown to be effective inhibitors of endonuclease in the low micromolar range, additionally para-sulphonato-calix[8]arene is a partial inhibitor of rhDNase I

    Probing the Essential Catalytic Residues and Substrate Affinity in the Thermoactive Bacillus stearothermophilus US100 l-Arabinose Isomerase by Site-Directed Mutagenesis

    No full text
    The l-arabinose isomerase (l-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 l-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 l-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the l-fucose isomerase and the l-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 l-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 l-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for l-fucose and decreased the affinity for l-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition

    Digestive Inflammation: Role of Proteolytic Dysregulation

    No full text
    Dysregulation of the proteolytic balance is often associated with diseases. Serine proteases and matrix metalloproteases are involved in a multitude of biological processes and notably in the inflammatory response. Within the framework of digestive inflammation, several studies have stressed the role of serine proteases and matrix metalloproteases (MMPs) as key actors in its pathogenesis and pointed to the unbalance between these proteases and their respective inhibitors. Substantial efforts have been made in developing new inhibitors, some of which have reached clinical trial phases, notwithstanding that unwanted side effects remain a major issue. However, studies on the proteolytic imbalance and inhibitors conception are directed toward host serine/MMPs proteases revealing a hitherto overlooked factor, the potential contribution of their bacterial counterpart. In this review, we highlight the role of proteolytic imbalance in human digestive inflammation focusing on serine proteases and MMPs and their respective inhibitors considering both host and bacterial origin

    Bacillus phytases: Current status and future prospects

    No full text
    Phytases catalyze the hydrolysis of phytic acid in a stepwise manner to lower inositol phosphates, myo-inositol (having important role in metabolism and signal transduction pathways), and inorganic phosphate. These enzymes have been widely used in animal feed in order to improve phosphorus nutrition and to decrease pollution in animal waste. Compared to previously described phytases, the phytase (PhyL) from Bacillus licheniformis ATCC 14580 has attractive biochemical properties which can increase the profitability of several biotechnological procedures (animal nutrition, human health…etc). Due to its amino acid sequence with critical substitutions, the PhyL could be a model to enhance other phytases features, in terms of thermal stability and high activity. Otherwise, an engineered PhyL, with low pH optimum, will represent a challenge within the class of β- propeller phytases
    • …
    corecore